Multiple stochastic integrals appearing in the stochastic Taylor expansions
نویسندگان
چکیده
منابع مشابه
Stochastic Taylor expansions and heat kernel asymptotics
3 Stochastic Taylor expansions 5 3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.2 Chen series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.3 Brownian Chen series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.4 Exponential of a vector field . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.5 Li...
متن کاملTaylor expansions of solutions of stochastic partial differential equations
The solutions of parabolic and hyperbolic stochastic partial differential equations (SPDEs) driven by an infinite dimensional Brownian motion, which is a martingale, are in general not semi-martingales any more and therefore do not satisfy an Itô formula like the solutions of finite dimensional stochastic differential equations (SODEs). In particular, it is not possible to derive stochastic Tay...
متن کاملLimit theorems for multiple stochastic integrals
We show that the general stable convergence results proved in Peccati and Taqqu (2007) for generalized adapted stochastic integrals can be used to obtain limit theorems for multiple stochastic integrals with respect to independently scattered random measures. Several applications are developed in a companion paper (see Peccati and Taqqu, 2008a), where we prove central limit results involving si...
متن کاملPath Integrals for Stochastic Neurodynamics Path Integrals for Stochastic Neurodynamics
We present here a method for the study of stochastic neurodynamics in the framework of the "Neural Network Master Equation" proposed by Cowan. We consider a model neural network composed of two{state neurons subject to simple stochastic kinetics. We introduce a method based on a spin choerent state path integral to compute the moment generating function of such a network. A formal construction ...
متن کاملConditionally Gaussian stochastic integrals
We derive conditional Gaussian type identities of the form E [ exp ( i ∫ T 0 utdBt ) ∣∣∣∣ ∫ T 0 |ut|dt ] = exp ( − 2 ∫ T 0 |ut|dt ) , for Brownian stochastic integrals, under conditions on the process (ut)t∈[0,T ] specified using the Malliavin calculus. This applies in particular to the quadratic Brownian integral ∫ t 0 ABsdBs under the matrix condition A †A2 = 0, using a characterization of Yo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Mathematical Society of Japan
سال: 1995
ISSN: 0025-5645
DOI: 10.2969/jmsj/04710067